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TRANSFORMATIONS OF GAUSSIAN LIGHT BEAMS
CAUSED BY REFLECTION IN FEL RESONATORS

I. INTRODUCTION
1-7

Free Electron Lasers (FELs) operating as oscillators require the

trapping of light pulses between systems of mirrors (resonators). 8'9 These

pulses are repeatedly amplified via synchronous interaction with electron

pulses passing through the wiggler. The radiation produced by the

stimulated emission is confined within a narrow cone along the beam axis.

Therefore, the vector potential can be represented as a superposition of

Gaussian modes. Those are the free space eigenmodes A m(r) = e mnA mn(r)eikz

where e is the polarization vector, of the paraxial equation,
10

2BA
ViA - 2ik T=. (1)

Equation (1) is the kI << k = w/c limit of the exact wave equation. The

simplest oscillator configuration is that of an open resonator with two

opposed identical mirrors. The vacuum eigenmodes for this arrangement are

also expressed in terms of the paraxial eigenmodes. Their detailed

structure can be described in terms of either Gaussian-Hermite functions in

rectangular coordinates, or Laguerre functions in polar coordinates. In

both representations all the eigenmodes with given wave number k are

characterized by two independent parameters: the waist w = (2b/k)1 /2 and

the curvature of the wave front 1/R = z/(z 2 + b 2), where z is the distance

from the waist position and b is the Rayleigh length (Fig. 1).

The electron beam is an optically active medium that alters the

characteristic parameters of the radiation after each passage. During the

build-up period the modal content and the structure of the light pulses

inside the oscillator will change. A numerical method has been developed

recently optimizing the representation for the amplified radiation. In the

source dependent expansion11,12 the waist size and the curvature of the

elected modal basis is tailored according to the driving source term. That

Manuscript appr'ed Augst 8, 1988.
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minimizes the number of modes required to describe the light beam. In

general, the curvature and waist size of these modes does not match the

curvature and waist of the vacuum eigenmodes for the resonator. Therefore,

the transfer matrix for a given mirror must be known for arbitrary incoming

modes. This need stems from computational as well as physical reasons.

The knowledge of the cavity reflection matrix R, together with the gain

matrix G through the wiggler, is necessary in determining the potential for

steady state operation.

The study of the reflection matrix must include the effects of

deflecting the light beam, in addition to finite mirror size and curvature

mismatches. During high power operation, grazing mirror incidence may be

necessary to avoid exceeding the dielectric breakdown limit for the

reflecting surface. Also, in case of a high per-pass gain with optical

guiding, the spot size for the reflected radiation could be much larger

than the incoming. In two mirror resonators, the reflected radiation could

then damage the wiggler. Therefore, ring resonators, including three or

more mirrors, must be employed for the deflection and recirculation of the

light pulses.

We are interested in cases when the reflected radiation remains

focused along some direction z0 making an angle + with the incoming z..

Then the reflected vector potential will also be expandable in free space

eigenmodes Apq (r0 ) of the paraxial equation in the new direction. The

mirror surface generating focused reflection in the desired direction can

not be arbitrary but must be appropriately defined. The angle of

deflection + will enter the equation defining the mirror surface. The

other surface parameter, namely the curvature 1/Rm, is a free parameter.

It determines the curvature 1/R0 for the outgoing modes given the curvature

1/Ri of the incoming modes. In case of reflection by an arbitrary surface,
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the scattered radiation cannot, in general, be covered by the paraxial

modes that do not form a complete set in three dimensions.

A single incident mode A mn(ri) will, in general, be partially

reflected into different modes Apq (r0 ) where (m,n)$(p,q). This is caused

by the deflection of the light beam, the finite size of the mirror and the

curvature mismatches. Reflection into other modes will affect the

interaction between the electron beam and the radiation in a number of

ways. First, the rms radius of the light beam will change, affecting the

matching beam condition. Second, the light pulse will spread axially

because of dispersion among different modes, since the phase velocity

depends on the modal number (m,n). Third, different phase shifts among the

various modes during reflection may render these modes out of phase after a

number of bouncings off the resonator. For the above reasons the fraction

of radiation scattered into other modes will contribute to the losses in

FEL oscillators.

The method for obtaining the reflection matrix is outlined in Sec. II.

The definition of the appropriate mirror surface is given in Sec. III. In

Sec. IV the integral expressions for the matrix elements are derived. An

analytic expansion in powers of a small parameter (of the order of the

diffraction angle) is given in the same section. Some limiting cases are

examined in Sec. V. In Sec. VI the reflection of the fundamantal mode

(0,0) is studied in detail. Section VII deals with cross-coupling effects

among the vector components of the radiation.
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II. OUTLINE OF THE METHOD

The free space eigenmodes Amn (r) of the paraxial wave equation have

the general form

ikz k(x2 + y')] z

umn(r;W) i + 2R(z) e em2n (A n(r) ee(2)

b 2

The first exponential in (2) contains the rapidly varying phase on the

wavelength scale X = 2n/k. The wavefronts are spherical with radius of

curvature R(z) given by 1/R(z) = z/(z 2 + b 2). The spot size of the

221/2 1/2radiation envelope is W(z) = w(1 + z /b2) , where w = (2b/k) is the

waist, and the distance z is measured from the position of the waist. The

amplitude squared of the mode drops by 1/2 over a distance equal to the

Rayleigh length b (also known as confocal parameter). Most of the

radiation is confined within a cone parametrized by the diffraction angle

1/2
d = W/z = (X/bn) . The structure of the amplitude profile u mn(r;W)

depends on the elected coordinate system. Umn (r;W) contains the slow

spatial variation equivalent to a small wave number perpendicular to the z-

direction. Higher modes correspond to an increasing effective ki,

producing the slow phase shift expressed by the term exp [iSmn (z)). For a

given k, the mode is completely defined by the two independent parameters R

and w (or any combination of two out of the four quantities R, w, z and b).

The geometry of the reflection is illustrated in Fig. 2. The

subscripts i and o denote the coordinate system used for expressing

incoming and outgoing modes. ri is defined with the zi axis along the

direction of incidence and r0 has the z0 axis along the direction of

reflection. The origins are displaced from the mirror center by 1i and 10

respectively, where 1 is the distance of the minimum waist w i for the
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incoming radiation and 10 is the distance of the minimum waist w0 for the

reflected mode. A third coordinate system rs with the origin at the mirror

center and zm aligned with the mirror axis will be useful in the

computations. Underlined quantities r., r and r stand for the mirror
1-0 -S

surface coordinates in each reference frame. The transformations among the

various frames are defined by

x = x cos I - z sin x = x cos I + z sin
i  s  2 s 2'o s 2 s 2'

Yi = Ys? (3a) Yo = Ys' (3b)

z = z cos + x si + zo = z cos -x sin + 1
Ss 2 o s 2 s 2 o

We consider incoming radiation of given curvature and of arbitrary

amplitude profile A i(ri), consisting of various modes (m,n) with the same

Ri(z). If both incident and reflected radiation are expanded into

eigenmodes,

Ai ei (r ci Umn (ri) eimmnA (r e- mn 2 e (4a)

mn 112
1/ e

1

0r ei(r) u pq(r°) pq

A(r)=e 0 c p 0 e (4b)
p,q Pq z°  1/2

where

i~) =k~z+ 2 2]

+2Ri(z) , (4c)



i
the relation among the incident and reflected expansion coefficients c inn'

c pq is formulated by

cO= R ci, (5a)

or

co = E Rmn c i (5b)
pq pq mn'

m,n

where Rmn are the elements of the reflection matrix R.
pq

We examine the case when the mirror dimensions p are much larger than

the wavelength X, X << p (otherwise diffraction rather than reflection

would prevail). We also assume that the angle subtended by the mirror

= p/Rm, where Rm parametrizes the radius of curvature, is small, of the

order of the diffraction angle ed, ~ ed c. The v-th component of the

reflected vector potential at distance ir 0  ro1 >> X from the mirror

surface S is then given by

ik e ro
A°(V) (r) =- J ds AS (to) (n • r). (6)

0))0) T-E ro0- r 1 (V

S

In Eq. (6) n-Sr is the obliqueness factor where 6r = r -r )/ ro-rol and n

is the normal unit vector to the reflecting surface. The surface element

ds is given by ds = S[z 0-f(xoyo)]dx0dy0dz0 where z° = f(xoyo) is the

surface equation. Equation (6) is the convolution of a source term AS(r )

at the mirror surface with the propagator exp(iklr -r 1)/Ir_-r J, i.e., a

superposition of spherical waves originating at S. The source term AS (r)

is specified from the incoming vector potential Ai (ri) through the boundary

conditions and the coordinate transformations (3). We will assume a

perfectly conducting surface, where the incident and reflected fields are

related by
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A = -A' + 2 (n A) n, (7a)

and n is the normal unit vector to the reflecting surface. The second term

in (7a) introduces a coupling among different vector components, caused by

the mirror curvature. This cross-coupling is small and disappears in the

plane mirror limit,

AS ) (-A (7b)

where Ai and As are expressed in the incoming and outgoing coordinate

systems respectively. Because of the linear superposition principle, Eq.

(6), the cross-coupling contribution can be added separately, and will be

deferred until Sec. VII. In the next three sections we will treat the

reflected vector components as independent scalars, according to (7b), that

corresponds to a phase shift by n during reflection. Most of the

computations will be performed on the mirror surface. To simplify the

notation from now on, we drop the bar ( ) under the mirror coordinates r.

Subscripted quantities such as ri, r0 , rs will signify the mirror

coordinates in each reference frame. Unsubscripted coordinates will denote

the observation point in the reflected radiation frame of reference.

We seek cases when the reflected radiation propagates along z0,

contained within a cross section of dimensions x,y << z-z0 . The expansion

Ir-rol = (z-zo ) (1 + [(x-x o )
2 + (y-yo) 2 /2(z-z 0)2 } replaces the full

propagator inside (6) with the paraxial propagator in that direction,

A (r) = JJds A(r0 ) (n. 6r) Uk(r,ro), (8a)

S
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where

-ik(z-z o) (X-X)2+ (y-yo) 2
ik e -ik0

U-k (r, ro) = 2 z-z e 2(z-zo) (8b)
0

Expression (8) is the approximation of the exact solution (6) to order

I(x-x 0 ) 2 + (y-yo) 
2 J/2(z-z0)2 _ C2 . It is valid provided the surface S

produces focused reflection along the desired direction. Otherwise the

paraxial limit will fail to encompass all the radiation contained in the

original expression (6). The geometry of the mirror that is compatible

with the above approximation will be obtained during the computation of the

reflection matrix.

It is known that the profile of a given eigenmode Amn (x0,yoz 0 ) at z

is generated by the propagator Uk (r,r0 ) acting on the mode Amn(x,y,O) at z

= 0. The inverse propagator U_k(r,ro) therefore reproduces A mn(x,y,O) from

A mn(x 0,yo'z0 ),

2 2

u (x], y z 0  
m ,ik[z 

, x 
)+ 

2

JJdxodY Zo2]/ 2 e 2R(z U-(ro) = u (x'yO. (9)

b02

This suggests multiplying and dividing the integrand inside (8a) by

2 2 1/2exp(if(ro)] / 11 + Zo2/b 011 , recasting (8a) in the form,

A (r) = ds ei S(ro ) e-i(r Uk(r,r ), (10)

where the source term S(ro) is,

r z 2(ro) 1/2

S(r) [ri(ro) ] (n Sr) (11)

0

8



and the phase term A(r) i[ri(ro)] + 0 (r.) is given by,

(r ) =k [z.(r) + z + x.2 (r0 ) + yi2(ro
)  Xo2 + Yo2  (

0 i10 0 2 Ri(r0 ) 2R (r (12)

The phase A(r ) depends on the angle 4 through the coordinate

transformations Eqs. (3).

The term exp[iA(r )] is varying rapidly, on the scale of the

wavelength X. Therefore, its convolution with the slowly varying source

term over an arbitrary surface will be vanishingly small. In general, this

corresponds to radiation scattering where only a small fraction of the

incoming radiation is reflected along the considered direction . The

integral (10) will be finite only when it is possible to satisfy the

condition 6(r0 ) = constant over some surface S. If, in addition, S is much

larger than X, expression (10) will be finite only within a narrow angle 84

around 4'. This guarantees that the reflected radiation remains focused

along that direction. Therefore, a condition that the exact reflected

radiation (6) be fully covered by the paraxial limit (10) is that

A(ro) = constant, (13)

along the surface S. Accordingly, the optical path is the same along the

rays connecting an incoming wave front with its mirror image (reflected)

wave front.

Requirement (13) defines the appropriate mirror surface zo=fo (xoyo;)

for reflection in the elected direction. Assuming that f is found, we may

express z0 in terms of x0 , y0 and use the constancy of A(r0 ) over S,

reducing (10) into

A°(r) =j dx0dy0 a(xoy o ) U_k(r,r ). (14)

S



O(xoYo) u S[Xoyoz 0(Xoyo )] is fully expanded in terms of umn(xoyo) that

form a complete set in two dimensions,

= U Rmn Umn (XoY 0 ;W ). (15)
m,n

The expansion coefficients Rmn for Gaussian incoming radiation of

arbitrary profile a(xoy o) are given by

mn N'. ax~ x~)r~.~ 2R n=jdxodYo a(XoYo) Umn (X o o )/dx 0 dYo Umn (xoyo;W0 ). (16)

The radiation spot size W at the location of the mirror center is a free0

parameter, yet to be specified. Each choice of W generates an equivalent

representation for a(xoYo).

Upon substituting expansion (15) inside the integral (14) and using

the property (9) for the inverse propagator Uk, the reflected vector

potential assumes the final form

A0(x,yO) = E Rmn umn(X,Y;Wo), (17)
m,n

where Wo(Z) = w0 (1 + z2/b 2)1/2, w = (2bo/k)1 /2  Expression (17) is a

complete decomposition of the reflected radiation into paraxial eigenmodes

for incident radiation of arbitrary profile. Therefore, condition (13)

that defines the mirror surface is sufficient for the full reflection of

paraxial (Gaussian) incoming light beams into paraxial beams only. The

fraction of the electromagnetic flux incident on the mirror is conserved

after reflection. If, on the other hand, (13) is seriously violated, the

paraxial modes are inadequate to include all reflected radiation, and the

incident flux is not conserved by expressions similar to (17).

10



III. MIRROR SURFACE.

To obtain the equation for S we express all quantities inside (12) in

the mirror coordinate frame applying the transformations (3a) and (3b).

Using the scaling xs /Rm ~s /Rm s << 1, zs/Rm - c2 we obtain from (13)

21 12 cos2  + ys2], (18a)

mCOS

where

1 1 1
R -2R +2.' (18b)

m 0 1

Equation (18a) is the analytic expression for a paraboloid surface.

Rm parametrizes the mirror curvature, being positive or negative for a

convex or concave mirror respectively. The surface is reflection symmetric

with (zx)s and (zy)s as the symmetry planes; there is no rotational

symmetry around zs . Surface (18a) can also be approximated, to second

2 2order in (x s/R M), (y s/R M) by hyperboloids or ellipsoids defined by

(z R cos - x cos 2 - Y = R 2cos2 2 (19a)
s 2 2 s m 2

Zs+ RCos) + xs + ys = R Cos 2(19b)

All the surfaces become spherical in the limit of perpendicular incidence *

= 0, and plane mirrors when Rm -+. Using the definition of the curvature

for the paraxial modes, Eq. (2), and the fact that R >> b in cases of

interest, we obtain from (18b)

1 2 1
-R R K (20)

0 m 1

Relation (20) defines the curvature of the reflected modes from the

incoming mode curvature and the curvature of the mirror.

i • f i iil ~ l H l i



Equations (18)-(20) imply that

P 2

Ars)a Ari(s ),r(r s) = const. + 0 kP ~2 (21)

where p parametrizes the mirror size. A more complicated surface equation

(higher than quadratic in x, y, z) is required to improve the constancy to

a higher order. In the next section the reflection matrix will be computed

by expansion in powers of W /Rm o/R . Since kp >> 1, the approximation

6(rs ) = constant is satisfactory for a first order expansion as long as

p/Rm  1/kp. In case that p/Rm > 1/kp, (x sy s ) is a slowly varying

function over S. Large mirrors require the inclusion of the phase slippage

term exp Iid(xsys)) next to the source term a(xsys) in Eq. (16).

The unit vector n normal to the mirror surface is given by

n= pf = Cos ±~ 1 (. + JI~~f - os ry R Cos 2)

where f (x, Ys, z s) is given by Eq. (18a).

12



IV. COMPUTATION OF THE REFLECTION MATRIX

According to the definition (5b), the Rmn element of the reflection
pq

matrix R is obtained from the source term apq (xoyo) inside (14) generated

by a single incident eigenmode A pq[ri(ro) ] . The integration is performed

in the mirror-aligned coordinates, taking advantage of the existing

symmetries. The coordinates ri and r0 , defining the incoming and outgoing

wave functions, become explicit functions of xs, YS through the

transformations (3). The surface equation (14a) is used to express z5 in

terms of (xsys). The mirror boundary

x 2 os 2  + Ys 2= p  (22)

is defined by the intersection of the infinite surface (18-a) with the plane

z = const = 2p 2cos2 (/2)/Rm . After the above manipulations, the

reflection matrix elements take the form

2 1/2
zo (Xs,Ys )

S U mn(x sys)u pq(Xs,ys) b 2  ia(xYs)

R n = JddYs  on 5 1 0 2_/2_______ e1I + M2 1+ b
0 1

i (X ,ys)- iS0 n(Xsy s) " s x2 sin 2 3)_ qSS m Cs1( i s 2)(23)
os 1 n2 R 2

m 
R

where

Umns(XysY) Umn1o(Xs'Ys) Ys]' Upq(x sYs) - pq[xi(sYs Ys "

(24)

13



Expression (23) is correct to order p2/R 2

It will be seen that R, as given by (23), depends on four parameters

R * R(+, a, p; ). (25)

is the reflection angle shown in Fig. 2. a is the ratio of the incoming

to the outgoing spot size at the mirror, a = Wi(li)/W0 (l0 ). P = P/Wo

parametrizes the mirror size compared to the radiation spot size. E =

Wo/Rm scales as the diffraction angle 0d = W0/10 multiplied by the

curvature mismatch Ro/Rm between the mirror and the radiation wavefronts.

The spot size W enters as a free parameter because only the curvature 1/R0 o

for the reflected modes is specified by the mirror geometry. Since many

combinations of W and 1 apply to a given curvature according to paragraph0 0

Eq. (2), an additional selection rule for W is needed. Note that W does0 0

not have to match W.. This is obvious in cases when the mirror size p is

smaller that Wi. Each value of W defines a complete set of modes for the

reflected radiation and an equivalent representation fot R.

Parameters +, a, and V can be arbitrary. In most cases of interest,

however, & is small, << 1, of the same order as the diffraction angle 0d.

The analytic computation of the matrix elements is carried out by expanding

the integral (23) in powers of &,

R = R(O) + & R(1) + &2 R(2). (26)

Each representation of R is tied to the choice of the basis functions

Umn (r). The eigenmodes u mn(r) are specified according to the coordinate

geometry. In the next subsections we derive R in Gaussian-Hermite and

Gaussian-Laguerre representations. For simplicity, it is assumed that

A(XsYs) in Eq. (23) is constant, i.e., kp (p/R m) << 1.

14



(a). Gaussian-Hermite representation

In rectangular coordinates (x,y,z) the functions umn(x,z;W) are

given by

22

2w 2

Umn(X,y;w) = amnm- --/) Hn e (27a)

where Hm, Hn are the Hermite polynomials and amn is a normalization factor,

setting the total electromagnetic flux carried by the mode equal to unity,

i2 n 2m+n 1(27b)amn - R m!

The corresponding slow phase factor 6mn (z) in Eq. (2) is

6m(z) = (m + n + 1) tan- I . (27c)

Substituting inside (23), expanding in & and performing the integrations,

Eqs. (23)-(26) yield

i* mn

Rmn (0 ) Cmn e pq Imn (28a)
pq pq pq

**41mn
en en *pq mn(2b

Rpq (1) = C e tan mPq + i Nm n (

where Cmn is a normalization factor
pq

.-1/2
C!ra -° (2m+n+p+q mlnmp!q!) , (28c)

pq JW-- .

and the phase *mn is expressed by
pq

mn = (p+q+l)tan- I  - (m+n+l)tan- I  + k(li+1). (28d)

pq(

15



Xs Ys 2+

5  5  (x +1 (X 2 + 2

1mn fdX dY Fp((X) Hq(Y) F (X) Hn(Y) e- 2  (29a)Pq = , ~,cX)q m(29a)

-X -Y
s s

X Ys 2+2
S -s- c,+(x2 + Y 2

Mrnp  = JdX fdY Hp(aX) H (Y) Hm(X) H (Y) e 2

pqq n (n
-X -Y

S S
(29b)

2 + 2 2 X y2)

X{ s Ys_ 2 +1 (X2 + 2)

Nmn =pq JdX fdY-2_ Hp(CX) Hq(Y) Hm(X) H (Y) e (29c)
-X -Y

s s

In the rescaled variables X = cos /2 V2x s/W , Y = Vy s/Wo, the surface

boundary is given by X 2 + -- 2p2/W . The lowest terms can be computedS 0

directly. The matrix elements are computed, to first order in &, in

Appendix A for large size mirror and a = 1.

(b). Gaussian-Laguerre representation

2 2 1/2
In cylindrical coordinates (r,e,z) where tane = x/y, r = (x +y2)

uP(r,O;W) take the form

COSPO 2 2r 2

U r -)cOspe (- p Lp 2r2' - 2 2
"(,9) = --- W e W(30a)

(sinpO W

where +p(-p) signifies cosine (sine) poloidal dcpendence, ap is given by

1/2 1/2

= nW 2, (30b
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and the LP are the Laguerre polynomials. The corresponding slow phase
m

&P(z) in Eq. (2) is,

6P(z) = (2m + p + 1) tan' (1). (30c)

The transformations among polar coordinates representing the various

reference frames are

z -1/2

r i  r. [I - sin 2  sin 2 2 m sines sin I cost1

[ i2s2 z Zs si±1cs 1/2
r = r [ - sin 20sin 2 + 2 z sin 0 ,cos (31)

z sin +
tan 0 =cos tan r cos

s s

z sin
tan 0° =cos I tan0 + cos (31b)

s s

The mirror surface (18a) is expressed in polar coordinates as

2 sin2 0 cos 2 2 + cos 2
s' 2R-Co (31c)

Applying similar computational procedure as in the previous subsection we

obtain

K
pq = Cpq 2D p[(Alpq(X)+&pq(X)+i *ppq
mn mn " 21 mm nV

0 (,2a)

17



cpq  L m!n! ( 2 ]11/2(3b
mn =2n L(m+p) (n+q)!" 2  (32b)

and the phase 4pq is expressed by

pq
n = (2m+p+l) tan - (2n+q+l) tan + k(l +1) (32c)

The integrals Dpq , EPq'UnPq' VPq and Wpq  are given by

2n cos p[ei(S)] cos q[0(03)]

DPq(X) oJ M 1 - sin 21 sin 2m

Epq(X) 2n sin e cos p[e(es)] (33b)

m (1 - sin 2 2 sin 2 9 )3/2 (33b)

02 m

P. g 2+1

nPq (t X) 2X L(aX) Lq(X) e (33c)

Umn(X)L = p)rp( X 2 X ?

V pq(x) =_1 -3 - a2+ X + m-- ) nX)mn- - I 2 L~P X Lq(X)J

2 - -
p g+ +12 X

( 2X)2 X 2 LP(oc2X) Lq(X) e , (33d)

p q+l +1
V p q  1 LP2X)2 X2X) L q(X anX) e= 2 (33e)

In obtaining (33a) - (33e), X was defined by X = 11-sin2 (/2)sin ejr 2/2W 0 2

thus, according to (22) and (30), the boundary X5  is X = 2p2 /W 2 The

lowest order terms for the first few elements are given in Appendix B for

arbitrary deflection angle * and a = 1.

18



V. LIMITING CASES

When the mirror radius tends to infinity (l/Rm 4 0), or in cases of

vertical incidence on the mirror (+ = 0), the higher order corrections in

the reflection matrix R disappear,

R = R(0) (34)

in both representations. The nondiagonal elements in R stem from the

finite mirror size only. If, in addition, the mirror size is very

large, p >> 1, it is appropriate to take W0 = Wi as best representation

for the reflected radiation. The a = 1 limit yields

Rmn 8mn (35)
pq pq

Thus, in case of large curved mirror and vertical incidence, or large

plane mirror and arbitrary incidence, the reflection matrix is the

identity matrix.

The case a = 1 is of special interest for arbitrary angle of

deflection + and mirror curvature 1/R, as it will be explained in the

next section. For finite mirror size p > Wo, ( p 1), there exists

zeroth order non-diagonal terms inside R(O). Since R(O) is independent

of the angle of deflection +, the finite mirror size yields the dominant

contribution to the reflection into modes different than the incoming.

The effects of the deflection of the light beam enter to first order in

, R(1), or higher. In the Hermite representation the elements R p(0)
pq

couple mode combinations with m + p = even, n + q = even. The elements

with either m + p or n + q odd vanish because of the even/odd symmetry

of the Hermite functions.

As the mirror size becomes very large and the limits of integration

in (23) are extended, the orthogonality among the various modes u V (r S)

becomes effective. The off-diagonal terms in R(O) become comparable to

19



the first order corrections roughly when 1/ 2 ~ ~ ed. At the limit V

4 all the nondiagonal elements of R are reduced to order & or higher,

R = R n(l) + 0(&2), m 0 p, n * q, (36a)
pq pq

and the only matrix elements of zeroth order in & are the diagonal

Rmn = Rmn 2
mn mn(0 ) + 0( (36b)

in both Hermite and Laguerre represenations. The lowest correction in the

2diagonal elements is of second order & , while the first order contribution

disappears. This is consistent with flux conservation during reflection in

case of large mirror.

In obtaining Eqs. (28) and (32) it was assumed that A(x sys) is

constant over S. According to (21) the variation of A is parametrized by

* 22*
& (kWi /R) . When (kW. /R) > 1, becomes of order & and the1 m -

effects of the slow phase slippage must be retained in (23). This effect,
*

known as spherical aberration, causes additional corrections R (1), of

order &*,

R = R(O) + & R(1) + & R (t) . .....

Spherical aberration does not disappear at the limit of large mirror

size, as opposed to the effects discussed so far. In fact, when &* > &,

it places a lower limit on the off-diagonal terms in the reflection

matrix,

Rmn > * Rmn 1)

pq - pq(

Perfect reflection, requiring 0 = , is possible only for plane mirror (Rm

4 ) of large size.

The superposition principle can be used to describe reflection from

more complex mirror surfaces. In case of a mirror with a hole the surface

integral (14) over Sm is expressed as fS = fSi - f$2 where SI is defined by

the mirror exterior boundary and S2 is the surface of the hole. The total

20



reflection matrix R is given by R = R(S1 ) - R(S2), the difference in the

reflection matrices associated with mirrors S1 and S2 respectively. The

transmission matrix T through a screen with an aperture of area S is given

by T = - R, R being the reflection matrix for a mirror matching the

aperture S. The transmission matrix for radiation diffracted behind a

finite size mirror is given by T'= 1 - ei n R where 1 is the identity

matrix.

21



VI. REFLECTION OF THE LOWEST ORDER MODE

The computation of all the truncated integrals for finite mirror

surface is nontrivial. Most applications, however, involve the (0,0)

lowest order mode as the dominant mode in both incoming and reflected

radiation. The strategy here is to compute the element R0 0 of the
00

reflection matrix first. Then the waist for the reflected modes V can be
0

Ro0
selected so that it maximizes R 00. The optimum representation condition

aa = 0, (37)

puts the maximum amount of the reflected radiation in the lowest order mode

(a different mode and matrix element may be chosen, if desired). It is

pointed out that (37) does not improve the properties of the reflected

radiation. It enables one to choose the best representation in terms of

minimizing the coefficients of the undesired modes for the scattered

radiation. Once W is fixed by (37) then the exact location and size of0

the waist(s) for the reflected modes is determined by solving the system of

equations

1
Ro 1 2+b 2' (38a)

o 1 O+
0 0

=o w0 [ 1 02] 1/2 
( %

The element R is identical in both representations since the lowest
00

order mode u0 0 is the same in rectangular and cylibdrical coordinates.

0
Performing the integration (29a) yields RO0 to first order in

00

22



R - + 0(2). (39)00 i+2 L

Note that the first order term vanishes and the lowest correction is of

2second order in E2. The exact dependence on the mirror size p is

parametrized by v = p/Wo, while a = Wi/W 0  parametrizes the ratio of the

incoming and scattered radiation spot sizes at the mirror. The optimization

condition 8R0o(0)/act = 0 yields, = 1 + exp[-(l+o2 )1 2][2ui2O+(2u 2+1)_2-1.

In case that the mirror cross section is much larger than the spot size of

the incoming mode, P >> I, a 4 1 and the reflected spot size at the mirror

matches the incoming, W = W..0 1

Large mirror size is desired to maximize the total reflection

coefficient. For incoming radiation of unity electromagnetic flux

Pi = Ici 2 Ic i  12 1 1, the total reflection coefficient = Po/Pi
pq

equals the reflected flux Po0

Po=Io2= 1 Rmn c 1 2 (40)PO {°2 = R  i l2 : 1 Rpq c P2.

mn pq pq pq (

In Fig. 3 we plot "iR for the lowest order incoming mode as a function of

p, = cos( /2) p/W0 = cos(u/2) p. ' parametrizes the size of the mirror

projection into the plane perpendicular to the incoming radiation

direction. The incoming radiation has a wavelength X = lp (10- 4cm),

waist w. = 2x1O cm at distance 1. = 1.8xlO 2 cm from the mirror and1 1

radius of curvature (at the mirror) R. 8.95x10 3cm. The mirror has a1

radius of curvature R = 8.95x10 3 cm, yielding reflected modes of R =m o

8.95xi03 (again 1 and w0 depend on the choice of W0 
). In Fig. 4 we

plot the magnitude of the reflection coefficients iRpq of the lowest
pq

order mode (0,0) into the firstr 25 modes (p,q) with p < q < 5, as a

function of u'. The deflection angle is 900 and the ratio of the spot
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sizes is 1. Increasing mirror size maximizes the diagonal element and

minimizes scattering into other modes. The spherical aberration was

retained inside (23) in evaluating the matrix elements. Its effect is

small, since for the above parameters * = 0.28&, and a good agreement

is observed with the constant A theoretical limit. In particular, the

dominant off-diagonal terms couple the (0,0) incoming mode to the (1,0),

(3,0) and (3,2) reflected modes only, according to the selection rules,

Eqs. A(10). Comparing Figs. 3 and 4 with the next plots shows that the

relative mirror size to the radiation spot size is the most important

parameter to determine the reflection into other than the incoming

modes.

In Fig. 5 we fix the mirror size p. = 2 and the angle * = 900 and

00vary the spot size ratio . The best representation, maximizing R 0

and minimizing R0 0 is obtained at o = 1. However, for small mirror p' =
pq

0.66, the maximum for R occurs at a = 0.70 (see Fig. 6). Radiation
00

reflected off mirrors smaller than the incoming spot size is best

described by outgoing modes of reduced spot size W < W.. Also note0 1

from Fig. 6b that for small mirror size the total power reflected into

the first 25 modes never exceeds 80% of the incoming flux; even with

many more modes "R remains less than 1. In Fig. 7 the reflection

coefficients R00  are plotted as functions of the angle of deflection
pq

for fixed o = 1, p' = 2. It is seen that, for sufficiently large

reflecting surface and good choice of the spot size W0 , the reflection

matrix is not very sensitive to * and the off-diagonal terms remain

small.

The main conclusions so far are summarized as follows. When the

mirror size is > 2.5 times the incoming spot size, the fraction of the

incident power scatterd into different modes is of order 2 for
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kV2i/Rm < 1, or 2 for kV2i/Rm > 1. This holds for a wide range of

deflection angles *. It will be shown in the next section that cross-

polarization effects are of the same order. In most applications both

and *are less than 10.2 . To this end, scattering losses will be

smaller than the losses caused by the finite reflectivity (i.e.,

absorption) by the mirror, for most dielectrics.
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VII. CROSS-POLARIZATION EFFECTS

The curvature of the mirror surface produces a cross-coupling between

the transverse components of the incoming and reflected radiation.

Inserting expressions (21) for the normal unit vector to the mirror inside

the boundary conditions Eq. (7a), the full source term

AS= (A xS, A yS, A zS) for an incoming wave Ai = (A x i , A , 0) is given by

As =-Ai Ys an 1
x x 2 R m Y

A x = - A + 2 tanl --- A
y y 2 R m x

AzS = 2 cost A ' + 2 Ys (41)
z 2RK x Rm m

In the above relations, the components of A i and AS are given in coordinate

systems aligned with the incoming and outgoing radiation, respectively.

According to (41) the reflection of a plane polarized wave generates

components polarized in every direction, including Az . These cross

polarization effects enter to order & and result in a small rotation of the

polarization angle.

The radiation steming from the A component will propagate

perpendicularly to the direction of interest 2o and escapes the resonator

as pure reflection loss. The relation between the incoming and reflected

transverse components, including cross-polarization effects, is now given

by

= 0 
(42)

The matrix R has been computed in the previous section. Substitution
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of the additional cross-terms in Eq. (41) inside the propagator integral

(6) yields

mn mn mn
0(xy)pq = 0(yx)pq = Opq

where

1Zo2(XsY s 1/2
---- + 2

ldta Ys Umn(Xs'Ys)Upq (xs'Ys) bo0mn = sd s  2 a R- l2 .1/22
Rp m [1 + 1 + zi 2 (X 5sY S )

0 1

i6 ( so K x 22
PqSs m [C.f( x sinsin )

x CS2 F 2 R
m R2

m

(43)

In Gaussian-Hermite representation, we obtain

. mn

omn (1) 2 Cmn e pq tan I Gm n  (44a)
pq pq 2 pq

with

X s g s _ (2 +g2)

G = rdX fdY Hp(aX) H Y Hm(X) H (Y) e (44b)

-x -Y
S S

In Gaussian-Laguerre representation, we have

x

=Pq / sin dX G pq (X) BPq(X), (45a)
Omn(1 2 Of s i mn

where

1 q+1 a2+1

GPq(X) ( 2 X)2 x 2 LP( 2X) Lq(X) e (45b)
mn- n
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and

B pq M 2nde cose cos .[Pei(e)]cos[qei(e)]

oa 1 - sin 2 1 sin 2e
2

In both representations, cross polarization effects enter to order t. In

case of vertical incidence (f = 0) with arbitrary curvature i/Rm, or plane

mirror (t - I/Rm = 0) and arbitrary incidence f, Q goes to zero.

Transverse vector components are reflected independently of each other in

these two limits. Some of the elements of 0 (in both representations) are

given in Appendix C for large (p >> W.) mirror.
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Appendix A. Computation of the Hermitian Matrix Elements.

The integrals (29) will be evaluated here in case the mirror size p is

much larger than the incoming mode spot size Wi, p cos 0/2 >> Wi. Then the

limits of the surface integrals can be extended to infinity, and the spot

size for the outgoing modes V0 matches that of the incoming at the mirror,

i.e., a = 1. We use the notation

X
2

* =e 2 H(X), (Al)

the recurrence relation

Hn (X) = 2n H nl(X), (A2)

and the orthonormality properties

dX *n(X)*m(X) = 2nnli Sm,n' (A3)

CO

f dX *n(X) X *m(X) <X>m,n= (2n-1ln1&m,n-1 + 2n(n+l)!6mn+l),

(A4)

CD

f dX pn(X)X 2 (X) a <X2>m,n

= {2 n-2n!? m,n-2 + 2n-l(2n+l)nf6m,n + 2n (n+2)!6m n+2}, (A5)

to obtain

Imn n 2m+nn!m! &n' (A6)
pq 2 p,m q,

mn 3 2nnMpq = " <X> p m( n 2 n &q , n'
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-2 [2k(X2>~.,i 'm 2m <X 2 >... n]( 2nI)8q, n

- ~~[2k 2 mm! p1, - 2m 2 M-1(M-1) 16 i<Y2>qn (A7)

N n 1[(m+n+1) jl~ + (p-.q+l) b 0R m <X>p~m/'In2fnln!&) &q,n* (AB)

pq /2~ 01 0

Inserting expressions (A3)-(A5) into Eqs. (A6)-(A8) we obtain

Rmn (0) = 6 8 (A9)

pq p,m q,n'

R mn (1) 
(AlO)

pq

tan t~ ~' 1/2 + 3/2 - n1 +~!i)m /2 8prn

1 -.- ~mi.~(nr ('m-,1' 1/2 L 3/2 1 (+11/2 2ml 2n+1l

2L 2 ) 2M 72 ( 2 JP,M+1

I~ ~ ~ 1~ m3 / (m(m-1)(m-2)) 1
2  '

/2 8 J ~p,r+3 - 8J 6p, m-3 5 6qn

(! 1 ~I 1/28  1 -(1/2 
(n-1 n-)" 1/~2

1 r(m+ 1/2  M)1/2 ]Jlj+2 1/2

2 ) sp,m+1 - (2) 6 p~m-i(fl12) 4 &q,n+2

b.R bp+)2~ R 1/2 + m1/ 2

( m+n+l1jI m + 00~~l opm- I~ [p 1 + q(n
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R is diagonal to zeroth order. The lowest order correction couples m with

m±l, m±3 In the X-direction and n with n, n±2 in the Y-direction. The

reflection matrix is not symmetric, Riun R Rpn . Also, it is not invariantpq en

to interchanging X and Y. This means that the modes umn (x,y) and unm(x,y)

with m 0 n are reflected differently.
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Appendix B. Computation of the First Matrix Elements in Laguerre

Representation.

Representation using Gaussian-Laguerre modes may be advantageous in

numerical simulations because fewer Laguerre modes than Hermite modes are

required to represent close-to-axisymmetric radiation profiles with the

same accuracy. However, the computation of Eqs. (33a) to (33e) is not so

straightforward. The integrations (33a) and (33b) for Ipq and Kpq over the

polar angle Os involve trigonometric functions of complicated arguments

ei(e s) and e0 (es), given implicitly by Eq. (31b). There is no simple

recurrence formula for this calculation. The first few elements are

computed here by expansions in powers of rs/R < -< . Substituting from
2/2 2 2 /lsnO 2si2) n

(31b) inside (33) and renormalizing r s  2 0 X/(l-sin */2sin 0), one

obtains, to first order in E,

2n

D00 (X) = f de 1 i 2 2 (BO)o -sin2 sin2 e
2n

10 01 1 2 2 @2
DO(X) =I _0(X)= - 1 x an d cose (B

212 tano (1-sin 2  sin2e)2

DI11x) = f de Cos2 (B2)

o (1-sin 2  sin2) 2 (
22

2 1 2 [dn sine

co 2 1(isin 2  sin~e 2 (3

D- 1(X) = -D -(X)=- -- X tan 2 dO 2
2/2 o (-sin 2 1 sin 2 e)

(B4)
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D- 1(X) = D -1(X) = 0. (B5)

We only need Epq to zeroth order in &, obtaining

2n Cos I sin2e

E- 0 (X) 0-1 M0 X = J O 2 1 2 0/2' (B6)

o (1-sin 2  sin~e

and

Ep q = 0 + 0(&) for (p,q) * (-1,0), (0-1). (B7)

The integrals (Bi) - (B7) are evaluated using the formula

n/2 sin x cos x 1 (ji+1 v 'F ( Y-1 v +2 2)f dx -lksi~ l = B 1, - l-F~p, 2' - +2'- k2j, (B8)

1-~k 2sin 2x)p 2 2'22 2

where B(p,q) = r(p)r(q)/r(p+q), r is the factorial function and F is the

hypergeometric function. The radial integrations for U, V and W are

performed directly, using the expressions LP(x) for the Laguerre functions

and the identities

I x -I1/2x
e x dx- ,

0

e - x xndx = nI,

0

• -x Xn+1/ 'dx ...(n+1/2)i'n. (B9)

0

Again, we extend the limits of integration to infinity assuming p cos(#/2)

>> Wi and o = 1. The zeroth order contribution is given by

R 00(0) -1,
00

R 00(0) -1,
33



R 1 ,(0) = Cos ,(2 )112 22

R1 1() =Cos I F(2F2,2,sin2 ,),

R-1-1 ()=Cs2 1 F(2,1.,2,sin2 I2VlO

The first order corrections in are given by

R10(1) -01 31/2

R00( )  -R 01(1) = E 11 I -sin 2 F(2,,2, sin 2 ,R0(1) = -R 1 (1) 16 2 , 2  (Bll

R00 ()= R 0(1) 0,OR01(1 10

1 ) 01 (1 ) -s 112Si 2 )
k (1) - -R (1) = -) 12 sin I(B2,,2,)i

T2) si I F(2,1j,2, sin2  (B),

and

R-g10 s2 2 {± (i 12
R n F(2,,2, sin2 ~ Cos2 I F(2,1,2, sn

00l)S 22 2 2A sin 2)i

c1 2  3 F 22' 2 4[5 + 1 " /

-1 1/2 (1[. i-121

R 1 n 9 F(2,1,2, sin 2 1 Cos 2  F(2,,2, sin 2

±2,F sin 2 ) [2 -
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R-10 (1 sin 1/ F!~ 2 39 F(2j2, .in2 Co 2 F(3,,2 sin 2

R1 1(1 2 Go Yv 2 2 2) - 2 '2 2

,5 + i2-1/2

The (-) sign and the lowest row inside the last square bracket in (B12)

correspond to exchanging indices,

RPq Rq p .

mn nm
Not alo hattheelmens 1-1 -1

Note also that the elements n R mn' coupling sine and cosine modes, are

of order 2 or higher for every m, n,

R- 1 (). (B13)m n
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Appendix C. Computation of the Cross-Polarization Matrix Elements

We compute here some of the first order cross-polarization matrix

elements in case of large mirror size p >> Wi and a 4 1. In the Gaussian-

Hermite representation we find from (44b), using the notation of Appendix

A,

Gmn 2mm, <Y> 8pq q,n p,m

m 12n 2n  }(I
E 2 mm n-ln! 8 qn_ + 2  (n+l) q,n+ 6 p,m, (C)

yielding

os (1) = sin / qnl+ AnTT (2
pq (qn-1 q,n+l p,m. (C2)

In Gaussian-Laguerre representation we only have to compute BPq(X),

Eq. (45c), to zeroth order in &. Applying the methods of Appendix B, we

find

Bp q = 0(&), if p,q * (1,0), (0,1),

BIO = B j de cos2e 3/2 (C3)o Isin 2 1 sin 20)32•()

Noting that Gmn (X) is the same as WPq(X), Eq. (33e), and inserting (C3) andmn- -'

(33e) inside (45a), we obtain

10 (1) = 001 (1) = 0,10 01

QO0 (1) = 0 (1) = E sin I F 2, sin
00 00 2 F(,~ i 2 )'

Q (1) Q 0(1) = sin IF( ', 2, sin ,
01 =10 = 2 ~222,5f 2)'

Q (1) =00 (1) = /2 & sin iF, , 2, sin 2  (C4)
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Appendix D. Small Aperture Limit

We have seen in Sec. V that in case of mirror surface S1 with an

aperture of area S2 the reflection matrix is given by

R(S;W) = R(S 1;Wo ) - R(S 2 ;Wo ) (D1)

In case that S2 << S1 the spot size W° optimizing the representation

for the scattered radiation will be determined predominantly by the surface

S V Thus, the formula (23) with W° given from

aR(SI; 0)
- - O, (D2)

can be used for the modal decomposition of the scattered radiation.

According to Eqs. (28a) and (29a) for the Hermite representation, and Eqs.

(32a) and (33c) for the Laguerre representation, the lowest order

2contribution from a small aperture P2 
<< Wo scales as R(S2;Wo) ~ &2.

In some cases, however, it is important to know the total radiation

diffracted through a small hole, rather than the modal decomposition. In

case of small apperture P29

k-12

«2<< 1k or X >> p2 /l, (D3)

where 10 - z is the distance of the observation point from the mirror, the

paraxial approximation, Eq. (8b) is taken one step further, setting

k [(Xo) 2 
+ _o2] 1 [(2+y2) - 2xx - 2yyo]. (D4)

0 0
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Substituting (D4) inside (8a) we obtain the "far field" limit of the

diffracted radiation

O(x,y,z=O) = ik dXodYoAi(Xoyo)(n.r)

ex-{ Lk_ [(x2+y2) - 2xx - 2yy (D5)

also known as Fraunhoffer diffraction. The condition (D3) can only be

valid for appertures much smaller than the spot size W at the mirror, P2

<< W , since for P2 ~ Wo (D3) is violated, kP2 2 kW 2(1+1 2/b

b 0o(1+02/bo02 ) > 1o . Neglecting terms of order kxm2/10 - kP22/lo << 1

means that terms of order xs/lm, xs/l 0 << 1/kxs, where kxs > 1, must also

be neglected. The source term can be written as Ai [xi,yi] A i[xs,ys ].

Rescaling variables to

K =cosIkx K ky (D6)
x 2 y 1

0 0

we obtain

2 2
i(pq 0+ k x+ M iKx xs+iK Ys

A (xyO) = e cos 2 2'k JUXsjdy 5 IIUC 5 3 5 /

0
(D7)

According to (D7) the outgoing radiation is the Fourier transform of the

incoming radiation in respect to K , K . Defining the "polar" coordinates
2+ 2 1/2 1 1a'

K = (Kx2+K y2 E tan- (Kx/Ky), we obtain, for A (xYS)

= ,lClpq Upq (Xsys), the scattered radiation

pq ~~ 2n0 1 ika ik (l +1 +
A (X,y,O) = c1  - P e o 21 )Xp,q pq 2n 0
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r- Si,°-si

Cos d H W22 Cos ]H, -2

2O J ds~ds Sp1 [/ . 2JOS ]qi [ W5 e
1 1

ei(m-n)e im+n in2EJ n (Kx s) J m(KYs ) e e (D8)

m=- W n=-W

The zeroth order contribution in x s/Wi << 1 yields

ika ik(lo+ x2+)
A0 ('' =c1 00 e . 21)A°(x,y,O) =coo 2-l e 0

o o n
0

xS Cos + Ys
s 2
W.

X cos I jdXsjdYs Jo(Kxs) Jo(Kys)e 1 (D9)

The waist size wf for the Fraunhoffer modes is given by the zeros of the

Bessel functions

kwf

K(wf) x ~ k-- P2 - 2n. (D1O)
0

Therefore, the diffraction angle ef is

wf X (
_f i P2(Dll)

f 0  p2

The requirement ef << 1 for the validity of the paraxial approximation puts

a lower limit in the aperture size p2

P2 
> > X. (D12)
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In case the aperture size is of the order of the wavelength X the

scattered wavefunctions are spherical rather than Gaussian. Because the

overall effect of a scatterer with size P2 - X is very small, the familiar

from quantum mechanics Born approximation, involving perturbation theory,

is applicable in that case.
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Figure 3 Plot of the total reflection coefficient for the lowest order

mode as a function of the mirror size I for * = 900. The

radiation has wavelength X = 10-4cm, waist w. = 2x0- cm at1

distance 1. = l.8xlO 2cm from the mirror and radius of curvature R.1

= R = 8.95x10 3cm.
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Figure 4 Reflection matrix elements for the lowest order mode (0,0) into

the first 25 modes (p,q) against the relative mirror size p.". The

magnitude 1R001 is plotted for angle of deflection *=900, ot = 1
pq

(W.i = W 0).
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